CFSv2 forecasts of a U.S. monthly tornado index

Michael K. Tippett^{1,2}, Adam H. Sobel^{3,4} and Suzana J. Camargo⁴

¹ International Research Institute for Climate and Society, Columbia University, Palisades, NY

²Center of Excellence for Climate Change Research, Department of Meteorology, King Abdulaziz University, Jeddah, Saudi Arabia

³ Department of Applied Physics and Applied Mathematics and Department of Earth and Environmental Sciences, Columbia University, NY, NY

⁴Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY

Extended range, monthly or seasonal forecasts of tornado activity: A hard problem

Observations are bad

 Tornado data is unreliable. Data quality and uncertainty will affect results. Should first work to improve the tornado dataset.

Numerical models are bad

 Model have biases in the Central US. Warm season precipitation is poorly represented. Varying bias patterns in tornado-prone regions.

Forecasts are bad

 Extending any results based on reanalysis and observations to forecasts is problematic. Forecast biases in the central US.

A hard problem to ignore

- April and May 2011
 - \$22.5 billion total losses
 - 540 fatalities
- March 2012
 - First billion-dollar weather disaster of 2012

Outline

- The "ingredients" approach
- A new monthly tornado activity index
- Results with NARR environmental parameters
- Results with CFSv2 forecasts

Connecting climate and tornado activity: Conditional probabilities

- Prob (tornadoes | current initial conditions)?
- Prob (tornadoes | ENSO)?
- Prob (tornadoes | Climate change)?

Two approaches:

- Statistical (data)
 - Expectation[tornadoes | something] = regression, composites
- Dynamical (model)
 - Tornadoes in mechanistic model forced by something

The problem with statistical and dynamical approaches

"Tornadoes, the deadliest weather disaster to hit the country this year, present a particularly thorny case."

- "Tornadoes are small and hard to count, and scientists have little confidence in the accuracy of older data."
- "The computer programs they use to analyze and forecast the climate do not do a good job of representing events as small as tornadoes."

Harsh Political Reality Slows Climate Studies Despite Extreme Year -- NY Times 12/25/2011

"Tornadoes are not in the least bit 'thorny." -- Roger Pielke, Jr

The "ingredients" approach: Associate environmental factors with likelihood of tornado activity

Basic Issues

 To what extent do environmental parameters explain tornado activity?

Does the distribution of environmental parameters during a month determine tornado activity?

 What makes one month more active than another?

Are the variations predictable?

Typical environmental parameters associated with tornadoes

- Instability, updrafts, e.g. CAPE
- Shear, e.g., 0-6km shear, Storm Relative Helicity (SRH)
- Convective initiation

Probability of severe thunderstorms with F2 tornado, 5cm hail, or 120 km/h wind gusts

Soundings in the vicinity of severe thunderstorms

Significant severe parameter (Craven and Brooks, 2004) CAPE x 0-6 km Shear > $10,000 \text{ m}^3 \text{ s}^{-3}$ Figure from Brooks and Dotzek (2008)

NCEP/NCAR 6-h reanalysis environmental parameters near severe thunderstorms 1997-1999

Days per Year with Favorable Tornado Parameters

Useful relation between large-scale environmental parameters and tornado activity on short time-scales

Useful relation between large-scale environmental parameters and tornado activity on short time-scales

A new monthly tornado activity index

A monthly index for the number of U.S. tornadoes

- Index = exp(constants x environmental parameters)
- Constants estimated by Poisson regression
- Potential parameters = CAPE, CIN, lifted index, lapse rate, mixing ratio,
 SRH, vertical shear, precipitation, convective precipitation and elevation
- Estimate constants from observed <u>climatology</u>
 - Avoids issues with changing technology and reporting practice
 - Same constants at all (U.S.) locations, all months of year

Data

- NARR data 1x1 degree grid. 1979-2010.
- SPC Tornado, Hail, and Wind Database. 1979-2010.
- <u>All</u> tornadoes (>F0). [F1 and greater gives smaller values, similar sensitivities]

A monthly index for the number of U.S. tornadoes

- Index = $\exp(c0 + c1 \times SRH + c2 \times cPrcp)$
 - Monthly averages
- Estimate 3 constants from annual cycle data
 - No annually varying data used to select parameters or fit constants
 - No forecast data used. "Prefect prognosis"
- Index = Expected number of tornadoes/month
 - 1x1 degree grid
 - All tornadoes (>F0).

Results with NARR environmental parameters

Climatology

Observations

(a) observed number of tornadoes 1979-2010

Index

Regional climatology

A single index based on monthly averages does not work well everywhere

Interannual variability

Interannual variability

Correlation between index and observed number CONUS

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Index	0.75	0.64	0.54	0.50	0.60	0.67	0.75	0.40	0.15	0.25	0.48	0.74
SRH only	0.24	0.12	0.14	0.34	0.41	0.39	0.51	0.31	-0.16	0.13	0.21	0.37
cPrcp only	0.76	0.58	0.68	0.60	0.30	0.54	0.60	0.33	0.15	0.28	0.53	0.74

What is the relative importance of the factors?

Most months, cPrcp variability is more important

Regional variability

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
South	0.66	0.51	0.52	0.69	0.50	0.47	0.57	0.31	0.12	0.46	0.60	0.71	0.53
Southeast	0.53	0.54	0.36	0.47	0.68	0.46	0.54	0.42	0.67	0.41	0.57	0.69	0.30
Central	0.68	0.69	0.65	0.53	0.56	0.73	0.65	0.35	0.42	0.26	0.28	0.73	0.51
Upper Midwest	-	_	0.60	0.55	0.71	0.57	0.56	0.14	0.54	0.56	_	-	0.45
Plains	-	_	0.63	0.58	0.80	0.53	0.81	0.49	0.55	0.23	_	-	0.51
Northeast	_	_	_	0.38	0.13	0.61	0.50	0.41	0.37	0.71	0.29	-	0.36
Southwest	_	_	_	0.21	0.13	0.37	0.32	0.40	0.02	0.31	_	-	0.22
Northwest	_	_	_	0.03	0.44	0.36	_	0.07	_	_	_	_	0.15
West	_	0.49	0.60	_	_	_	_	_	_	_	_	_	0.34

Monthly CFSv2 forecasts

CFSv2 hindcasts

- 1982-2010
- First month lead
- 16 ensemble members (9-24)
- Forecast June average = start from May 21,
 May 26, May 31 and June 5
- Same index constants (perfect prognosis, no MOS)

Climatology

Climatology

April indices

April parameters

May indices

May parameters

June indices

June parameters

Monthly Forecasts

Correlation between index and observed number CONUS

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
NARR	0.75	0.64	0.54	0.50	0.60	0.67	0.75	0.40	0.15	0.25	0.48	0.74
CFSv2	0.36	0.38	0.30	0.35	0.31	0.72	0.59	0.41	-0.25	0.18	0.41	0.37

Regional correlations

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
South	0.16	0.36	0.29	0.05	0.28	0.51	0.09	0.34	0.05	0.30	0.29	0.33
Southeast	0.22	0.24	0.00	0.41	0.66	0.25	-0.01	0.00	0.49	0.26	0.45	0.47
Central	0.47	0.50	0.64	0.23	0.37	0.45	0.42	0.05	0.19	0.03	0.24	0.42
Midwest			-0.12	0.58	0.15	0.67	0.39	0.42	0.02	0.39	-0.04	
Plains			0.12	0.37	0.40	0.50	0.53	0.27	-0.03	0.03		
Northeast				0.15	0.05	0.15	0.41	0.18	0.70	0.15	-0.02	
Southwest				0.02	-0.10	0.32	0.04	-0.01	-0.44	0.30		
Northwest				-0.14	0.15	0.30		0.19				
West		0.21	0.34	0.13								

2011 and 2012?

Tornado Reports

January 01, 2011 - December 27, 2011

Tornado Reports

January 01, 2012 - October 15, 2012

2011 and 2012?

^{*} See http://www.spc.noaa.gov/wcm/adj.html for more info.

2011 and 2012?

Daily data?

2011 2012 2013

Summary

- A new index associating environmental variables and US tornado activity
 - Explains aspects of annual cycle and interannual variability
- Systematic differences between NARR and CFSv2, especially convective precipitation.
- Monthly CFSv2 forecasts of index show some skill on continental and regional scales
- MOS could be beneficial